
A Final Report

for Year Two of the Task

Methodology for Automating

Software Systems

Task I of the Foundations for

Automating Software Systems.

=--

Prepared for Tim Crumbley

NASA Marshall Space Flight Center

Redstone Arsenal, Alabama

by

Dr. Warren Moseley

University of Alabama in Huntsville

Research Institute Room M34C

Huntsville Alabama, 35899

(NASA-CR-184233)

SOFTWARE SYSTEMS

Univ.) 96 p

METHODOLOGY

Final Report

FOR AUTOMATING

(Alabama

CSCL 09B

G3/61

N92-I0301

Unclas

0287445

r_

w

A Final Report

for Year Two of the Task

Methodology for Automating

Software Systems

J

Task I of the Foundations for

Automating Software Systems.

w

Prepared for Tim Crumbley

NASA Marshall Space Flight Center

Redstone Arsenal, Alabama

by

Dr. Warren Moseley

University of Alabama in Huntsville

Research Institute Room M34C

Huntsville Alabama, 35899

F

Introduction

m

This report will consist of four parts.

Section I - Software Assessments for Government Contractors

Section II - The Poor Man's Case Tool at age Two

= = Section III - Requirements Traceability using Expert Systems Tools

Section IV - Theoretical Foundations of the Poor Man's Case Tool

w

L_

n

SECTION I

SOFTWARE ASSESSMENTS

FOR GOVERNMENT CONTRACTORS

Software Assessments for Government Contractors.

On December 9,1989, Dr. Carl Davis, Dr. Ashok Amin, Dr Jim

Hooper, and Dr. Warren Moseley attended the briefing for the Software

Assessment Program at the Software Engineering Institute - Carnegie-

Mellon University in Pittsburgh Pennsylvania. We were introduced to

the SEI work on Software Process Modelling and the emphasis on the

software assessment model The first section of this report focuses on

two areas of this assessment. These two areas are:

1. Software Process Modelling,

2. The Software Assessment Criteria.

Software Process Modelling and the Software Assessment

2

w

m

L ,

m

w

w

L •

m,

i

w

w

Software Engineering Institute, SEI, located in Pittsburgh,

Pennsylvania, is a federal funded research and development center

operated by Carnegie-Mellon University, under contract to the

Department of Defense. An SEI objective is to provide leadership in

software engineering and in the transition of new software engineering

technology into practice.

In this paper we will discuss the software process modeling and

the impact of software process modeling on the functional capabilities

of the software engineering group at Building 4487 at NASA/Marshall

Space Flight Center. The purpose of the method for assessing the

software engineering capability of contractors was to facilitate

objective and consistent assessments of the ability of potential

Department of Defense(DoD) contractors to develop software in

accordance with modern software engineering methods. Such

assessment would be conducted either in the presolicitation

qualifications process, in the formal for proposal selection process or

perhaps in both. This document is intended to guide the assessment of

the contractors overall software engineering capability. It can be also

valuable in the assessment of a specific project team's software

engineering capability. This document can also be used as an aid to the

software development organizations in conducting internal

assessments of their own software answering capability. The helps

and suggestions in this document are designed to be a help in an

assessment teams to finding the highest priority for improvement of

the organization's capability A well-defined software process is

needed to provide organizations with a consistent framework for

performing their work and improving the way they do their work. An

3

m

w

overall framework for modeling simplifies the task of producing

process models, permits these models to be tailored to individual

needs, and facilitates process evolution.

Considerable attention has been devoted to software process

modeling during the past few years. In the Poor Man's Case Tool which

was developed under the direction of the software engineering group at

NASA, the concept of process modeling has been an integrated overall

part of the entire computer assisted effort for software engineering in

this particular contract. Models of the software life cycle processes

are expected to provide a means for reasoning about the organizational

processes used to develop and maintain software. Most efforts in this

field have focused on the functional or task oriented aspects of the

process.although a few recent efforts have proposed behaviorally

oriented modeling approaches. Even these however still approach

behavioral modeling from a task oriented standpoint. Several people

work cooperatively on a common project. They need someway to

coordinate their work. For relatively small or simple tasks this can

often be done informally, but with larger numbers of people or for more

sophisticated activities, more formal arrangements are needed.

For example, process definition can be compared to football

training. Teams without defined and practice plays do not make the

play-offs. Or the sequence of plays will change from game to game,

The winning team generally has worked out the plays in advance, knows

when to use them, and can perform them with skill. The software

process is much the same. Unfortunately, a few software teams work

out their plays in advance, even though they know the key problems

they will encounter. For some reason they act as if late requirements

4

w

r

Lm
w

w

L

changes, regressions, or system integrations problem will never occur.

The software process is a technology and managerial framework

established for applying tools, methods, and people to the task of

creating quality software. A defined process not only prepares for

likely eventualities, it also provides a mechanism for organized

learning.

As projects improve their methods for handling key tasks, these

can be incorporated in the repertoire of plays available to the rest of

the organization. This process definition makes it easy for each new

project to build on the experience of its predecessors, and also

protects against the dangers of ill-prepared crisis reactions.

An important observation of process management is that

process changes adopted in a crisis are often generally misguided.

Crisis are the times when shortcut are most likely when organizations

are most prone to omit critical tasks. These shortcuts often lead to

truncated testing, missed inspections, and deferred documentation.

With time at a premium, rationalization is most likely and process

judgements are least reliable. Because it is difficult to justify many

tests, analysis or inspections in the heat of the moment, a thoughtfully

defined and approved process can be a great help. When the crisis

occurs, it has been anticipated and established means are at hand to

deal with the crisis situation. In short, a defined process provides the

software professional with the framework they need to do a

consistently professional job.

While there are often needs for project specific process

tailoring, there is also a compelling reason for a standard process

framework:

5

=--

w

E

u

w

z,

v

z

m

w

1) Process standardization is required to permit training,

management review , and tool support. With standard

methods, project experience can contribute to the overall

process improvement in the organization. Process standards

provide a structured basis for measurement because process

definitions take time and effort to produce. It is

impractical to produce a new one for each project because

the basic tasks are common to most software engineering

projects. A standard process framework will need only

modest customization to meet most special project needs.

A software process architecture is the framework within

which a projects specific software processes are defined.

It establishes a structure, the standards, the relationships

of the various process elements. Within such an

architectural framework, it is possible to define many

specific processes. A software process model is then one

specific embodiment of such a software process

architecture. While software process models may be

constructed at an appropriate level of abstraction, the

process architecture must provide the elements, standards

and structural framework for refinements to any desired

level of detail. The criteria for effective process models:

Before establishing criteria for a evaluating process model

approaches, it is first necessary to define the uses of such

models. The basic uses for process models are:

1) Enable effective communication regarding the process. This

could involve communication among process users, process

6

_m

h

w

m

w

w

m

m

developers, managers, or researchers. It enhances

understanding, provides a precise basis for process

execution and automation, and facilities personal mobility.

2) Facilitates process reuse. Process development is time

consuming and expense Few projects can afford the time or

resources to totally develop their own software processes.

3) Supports process evolution Precise easily understood,

expandable, and reusable process definitions provide an

effective means for process learning. Good process models

are thus an important element of software process

improvement.

4) Facilitate process management: Effective management

requires a clear understanding of plans and the ability to

precisely characterize status against these plans. Process

models potentially provide a framework for precisely

defining process, status, criteria, and measurements.

From the above it should be clear that process models must

provide the following capabilities:

a) They should represent the way work is actually done or

actually to be done in the organization.

b) Provide a flexible and easily understandable yet powerful

framework for representing and enhancing the process and

c) Be refineable to what ever level of detail is necessary.

The first two points are relatively obvious, but the third one is

often overlooked. As improvements are made in supporting the

software process, precise task definitions are required to permit

effective tools and environment development. As with any data

7

u

w

=

m

L_

w

F -

m

processing application, poorly understood tasks lead to inadequate

requirements in ineffective systems. What is more challenging than

most application developments, software process automation is much

like application development and thus must start on precise process

models at relatively deep levels of detail.

Finally, to be most effective in supporting

process modeling, process models must go beyond

the four

representation.

must support comprehensive analysis of the process through the

and allow predictions to be made regarding the consequences of

objectives of

They

model,

potential changes and improvements. Certainly, modeling approaches

that smoothly integrate representation, analysis, and predictions are

preferred t23

A number of process models have been proposed in the literature,

including the Waterfall Model 45. and the Spiral Model s. While these

models has been helpful in explaining the software development

process, they has several shortcomings with respect to the above

criteria.

11) Mark I Kellner, Representation Formalism For Software Process Modeling, Proceedings of the 4th
International Software Process Workshop, Representing and Enacting the Software Process, ACM
1988, Pages 43 - 46.
22) Mark I Kellner and Gregg A Hanson, Software Process Modeling, Technical Report, CMU/SEI-88-TR-
9, Software Engineering Institute, Carngie-Mellon University, May 1988.,
33) Mark I Kellner and Gregg A. Hanson, Software Process Modleing, "A Case Study", Proceedings of
the 22nd Annual Hawaii International Conference On Systems Sciences, Vol. II, Software Track, IEEE,
1989, pages 175-188.

4Royce, W., Managing The Development of Large Software Systems, Concepts and
Techniques,Proceedings of the IEEE Westcon ??,IEEE, August 1970, Pages 1-9.
5Royce, W., Managing The Development of Large Software Systems,Proceedings of the 9th
International Conference on Software Englneering,lEEE 1987, Pages 328-338.

6Barry W. Boehm, A Spiral Model of Software Development and Enhancement,ACM Software
Engineering Notes,No. 11, Vol. 4.,August 1986, Pages 14-24.

8

r .

h

m

!

R
m

1) They do not adequately address the evasiveness of changes in

the software development.

2) They unrealistically imply a relative uniform orderly

sequence of development activities.

3.) The do not easily accommodate such recent developments as

rapid prototype or advanced languages.

4) They provides insufficient details to support process

optimization.

The overall reliance on the Waterfall Model has had several

uniform unfortunate consequences. First, by describing the process as

a sequence to requirements, design, implementation, and tests, each

step is viewed as completed before the next one starts. The reality is

that requirements live throughout the development and must be

constantly updated. Design, code and test undergo a similar evolution.

The problem is that when managers believe this unreal process, they

require that designs, for example, be completed before implementation

starts.

Everybody who has ever developed much software knows that

there are many tradeoffs between design and implementation. When

the design is not impacted by implementation, it means that either the

design went too far or the process was too rigid to recognize and

adjust implementation problems. The design and its documentation

must evolve in concert with the implementations. Unrealistic

software process models also bias the planning and management

system. When requirements are suppose to be found before design

9

._=..

w

B

starts, various documents and reviews are conducted to demonstrate

requirements completion. Since these documents must also change as

design issues are exposed, the status view of requirements can be

counter productive. Fuel is added to the fire by pressure from

management with an early freeze on changes. This inhibits creative

design requirements tradeoffs just when they should be encouraged.

These problems have corresponding analogs in design implementation,

and tests. The final consequence is process measurement. When an

unrealistic process model is used as a basis for planning, the

measurement and tracking system is corrupted. Since resources or

lead times standards are corrupted by the lack of clear activity

boundaries planning and tracking are equally imprecise

The fundamental problem with the current software process

models is that they do not accurately represent the behavioral or

timing aspects of what is really done. The reason is that traditional

process models are extremely sensitive task sequences. Consequently,

simple adjustments can require a complete restructuring of the model.

Rather than making an arbitrary decision such issues should be referred

to a systems design group for resolution.

The Software Assessment Criteria.

It should be pointed out in the consideration for a software assessment that

the results of the software assessment are confidential, and they are to be used

initially as a means of assessing the current situation of the organization.

a_=J=

10

't=_=

w

w

Section II

The Poor Man's Case Tool

at Two Years OId.lh General Introduction and Background for

The Poor Man's Case Tool(PMCT).Research Platform CASE

Environment.

The University of Alabama in Huntsville is in the third year of a

five-year intensive research program to establish a experimental

research platform for software engineering. There will be a major

emphasis placed on CASE and the importance of CASE to the

improvement of the practice of software engineering. This project is a

first step in establishing this research program, and first in a part of

this three year effort here at NASA.

Outline of major functions of our case tool

The operation of this system, Poor Man's CASE Tool, is based on

the Apple Macintosh system, employing available software including:

Focal Point II, Hypercard, XRefText, an existing Expert

System Tool and Sidekick These programs are functional in

themselves, but through advanced linking are available for operation

from within the tool under development.

The software industry is in need of maps, a plan where they want

to go, how they want to get there and something to measure their

progress as they journey. They need CASE tools. As hardware

technology advances are reported on a daily basis, true software

advances are much fewer and farther between. The technology required

to dramatically increase the processing speed of a computer produces

very visible and objective results, but software improvements are

often subjective and very tenuous. Today the focus on software is no

11

w

m

E

w

m

m

I
B

longer entirely aimed at getting the job done, but, due to the rising

cost of maintaining and developing software, rather, to make the

process of arriving at the solution more efficient. Since applicable

software theory is limited to the confines of the hardware and

operating systems available, and major breakthroughs are rarely

imminent, the only solution to this "software crisis" is some form of

software production engineering. This methodology would allow

software to be synthesized instead of "written" or even "built."

Computer Aided Software Engineering, CASE, is a tool well suited

to this concept. Software development has already gone through enough

phases to allow for reuse of design at the concept or even the code

level. Such is the aim of the Department of Defense mandating that all

new software systems be written in a standardized and certified Ada

system. Thereby a new portability can be found in one of the largest

software development arenas in the world. This mandate also implies

some operation requirements on the hardware to be used. What has

then been ordained is an ability to employ "technology transfer" across

development lines. This allows for information and ideas to be reused,

since, in the present economy, it is far cheaper to use something that

has already been done, than it is to prepare a customized system.

While the tendency used to be that a customer would require a system

to do the job just as he did it on paper, or by hand, today's customers

are more ready to accept something that works already and make some

modification to the process to be performed, whether it involves

simply using a new form or a new procedure. The task is not to get the

old job done, but to produce better results more efficiently.

w

i

12

m

m

m

The state of the software world is still predominantly made up of

custom built software systems, but as more modular languages, such

as Pascal, C and Ada, and operating systems, such as UNIX and UNIX

derivatives, come into play, generic function code segments no longer

need to be rewritten. The programmer need only pool his resources

with those of others and find a routine that already performs the

required function. Fortunately, the availability of these routines and

access to them is steadily increasing through the use of Local Area

Networks, Bulletin Boards, software libraries and software

warehouses. All of these facilities encourage sharing software and are

being relied upon more and more to cut down on development time.

Although much is being done about this problem, it still remains. There

are only so many concept changes than can be effected in the current

software development and use arenas, since there is such a large

distribution of effort and users in the field.

Standards, wisely chosen and stringently implemented, will help

to set the pace, but the volatility of the computer industry itself does

not lend itself to a lot of trust in committing to a specific system.

Today, standards are more widespread, but changes are still rapid, and

necessary. As standards approach the concept and implementation

level, that is beyond specific coding routines and methodologies, real,

functional, progressive systems can be implemented at many levels of

service.

The term 'CASE TOOL' refers to a computer system tool which

provides the capability to perform software system design, i.e..

Computer-Assisted-Software-Engineering. The approach represents

the problem solving process at an extremely high level of abstraction.

13

'lr._=, o

w

m

!

m

E

w

I feel this is important since often the software engineering process

relies specifically on an outline of the complete problem domain. After

all, if the engineer cannot see 'the big picture' how can he be expected

to know exactly where the smaller entities and procedures should be

integrated. The development of CASE tools has been fairly recently

introduced into the software development community and has been met

with a tremendous amount of enthusiasm. The functionality of a CASE

tool is based upon the general structure of the software life-cycle and

is built to allow a general specification for each phase of the software

engineering process. This capability provides a flexibility that cannot

be found with other software design tools. From the specification /

requirements phase where data dictionaries / entity relationships are

constructed, to the maintenance phase where the system design can be

restructured, the CASE environment provides a variety of tools to aid

in the construction of system software.

I!. CASE Needs

The fact that CASE tools are in great demand is partially due to

the change in software needs: programs should be efficient, easily

maintained and modifiable, and are usually quite large. The size of

programs especially calls for an efficient organizational tool for the

software engineering process. Many times, the design process is

documented on blackboards, and some even reside completely inside

one software engineer's mind. This causes an extremely difficult

problem for the implementation of large systems when many

programmers are needed to complete the task. Also, the diverse

methods used by some designers do not allow for easy access to

program sections by other persons of the software development team.

14

= _

=__

The use of CASE tools, however, provides a means in which the entire

task (be it large or small) can be assigned to any number of designers

on the team. This capability allows documentation to be constructed

while the system is being constructed. Therefore, the integration of

the entire system and changes to the design can both be performed

easily. Not only documentation, but when one member of the team finds

a need to access information from another team member, that

information can be accessed immediately from the same environment.

This has a psychological impact, in fact, when each member feels like

'part of the whole', the system design process will be more expediently

performed.

Artificial Intelligence and Software Engineering

The following diagram illustrates the relationship of Artificial

Intelligence and Software Engineering and how some of the components

fit into an overall scheme of problem solving.

m
w

15

= =

w

=

v

rward Chainin

Backward Chaining

IF THEN

Condil is

Rules Manipulate

and Test Objects

and Logic
Inference

Mechanism

®
Classes

Inherit

Down

Multiple
Inh_

Objects Represent

Things or Ideas

Up
I Database IMapping

Object Oriented
Representations

DO

Q
i utOmatic

oal
eneration

Order of Sources

If Change

Meta-Slots
Properties

=

Figure 2.1

This diagram is included in this report to give an overall road

map to the process involved in this section. It will be important in the

future of an experimental platform to have the ability to merge the two

technologies, Software Engineering and Artificial Intelligence. This is

I
i

16

= _

w

w

an important factor. In the first prototype of the PMCT the sections of

Artificial Intelligence(AI) are not included. It is important to

understand that phase one of the task Methodology for Automating

Software Systems includes the establishment of the overall framework

for the inclusion of all of the components.

Since the original prototype of MASS was done on the Macintosh,

primarily in Hypercard, the ability to launch application gives NASA the

ability to invoke Clips from any point in the process. Dan Rochowiak in

his task, which is a part of the overall UAH task, shows a

demonstration of how Clips can be used in the context of a Hypercard

application. This concept will be explored in more detail in phase !1

and phase II1.

The Sequence of Events

This section is the reference facility designed to start the design

and then keep it on track once design is in process.

m

w

17

m

m

B

w

m

_I

First

nments

Figure 2.2

The original proposal is entered into this section and it is

modified only as the customer deems necessary, beyond this, it is only

used as a reference tool to keep the project in line with the customer

demands.

The Tool also includes work planning tools, including facilities to

generate PERT charts and COCOMO cost estimating models. These tools

are industry standard job tracking references, allowing new users with

project control experience to use the system without having to learn

new methods of project tracking.

Another portion of the tool maintains the project database.

Functions of this portion include specification generation and analysis.

These segments are generated at the inception of the project and serve

as benchmarks for the design process. The Data Dictionary support

environment is maintained through the use of Hypercard and facilitates

=

18

r

L_

L .

r _

w

E

w

L_

m

m

w

m
w

quick paging through data samples and formats. This section is

directly accessible through the Tool's main menu. The Screen Painter

serves as a user interface to the Data Dictionary. Using Focal Point II,

it allows the user to create data entry and query forms to be used

against the dictionary. Implementation support is a repository of

functions to control and maintain system software design. The

functionality of this would also include traceability of software

modifications and other configuration management functions, such as

binary library maintenance. This portion also includes the DOD

standard specifications for software development, and a reusability

subsystem, to prevent duplicate effort on the same project.

Tool Integration is the Focal Point.

One of the main objectives of the Poor Man's Case Tool was to

provide access to a variety of tools for an integrated software

development environment. The idea that a system should be visually

intuitive is the focus of this project. From this point the user can get

to any portion of the Case tool that is needed. One of the important

parts of this tool is the Project Monitoring function.It does not appear

on the main card or anywhere in the utilization of the tool. One of the

ideas for this project was to try to derive from simple work pattern

study techniques the sequence of events and underlying patterns that

are an integral part of the software engineering process.The project

monitoring function is totally transparent to the engineer that is using

the tool.This places no burden on the engineer in the data collection

process.From studying the patterns, further research will be conducted

to help derive the conceptual structures that are a part of the thought

process that goes into the design of software products.

19

v

F_

I

D

There are several major functions contained in our CASE tool,

built for NASA, they include capabilities to perform the following

tasks"

Planning and Monitoring
Statement of Work

Automated Status Reports
Cost Estimation

Expert Systems Projects

Conventional Software Projects

Project Data Base Construction Tools

Flexible Drawing Tool

Included Drawing Tools

Links to existing Drawing Tools

Data Dictionary

Implementation Interface
Compiler Support

Configuration Management Support

Complete Automated Traceability Support

m

=

These components are the major tools used by software engineers

for a complete software design. They work together as illustrated. In

order to visit any section of the tool just point the mouse at the

appropriate item and click the mouse to select that item. The

following screen is the main focal point of the entire Poor Man's Case

TooI(PMCT).

Important Change since Mid-Year Report.

There have been many additions since the generation of the first

Mid-Year Report. The first is the main screen and the approach for the

software engineer, and the approach to the entire software process.

20

=.__.7

W

'==wr

Me Dow

-' I°
Iooooooooo I "|
I_0000000 I

I_°°°°°_ I L_

E

=
v

Figure 2.3

With the pull down menu in the above screen, the user has

options not before available. This Menu looks like the following.

Pull Me Down

Process

Plan

Repository

Help

Assume the user chooses __]_ as the selection the

following screen would appear. A major change to the PMCT is that

now the tool provides methodology specific help and drawing tool aid.

The current methods supported at this time are Data Flow, Data

m

m

21

==

_m

Structured(Warnler-Orr),
I

and Entity Relationship approach.

Help Is always available

You can also et back to Process

Figure 2.4

in addition there is also the addition of process. A CASE tool will

not provide the desired result unless it is based on an adequate

software process model. The Current models available are IEEE,

2167a, and the NASA Management Standard.

22

r

w

I7 A Software Development Process
B

i=_==I - Software Development=__ _[_I
I I I SRR Ap pro_,411_ II

Ioustome'rI k I [- SS.Appro__ProjMg_l

_ I' (Requir_ementsStage) F-_DesignStageJ-cDRXPP_'I_PD_PP_I_ -II

.i ' _' I _T _--_'

I IC'oo'e°entatio."ao
Test and Evaluation Stage)Audits

r'

IIso_eProject Library

Figure 2.5

One of the salient features that has been

added to the PMCT since the mid-year is the inclusion of a simple

report generator. It was decided to use the package REPORTS from

Activision for the prototype, since it works easily with the existing

hypercard framework. The following is the new data dictionary setup in

the PMCT. It is this structure that allows for expanded control of the

data dictionary. When one is satisfied that the data dictionary is

correct, or one wants to examine the data dictionary, the person can

23

w

Name of FieldlBallon Address

IGroup Name IIWeather Ballon

Actual Description

Acceptance Statu_

£
i

iO

Access Authorityl

Validity and Edit Rules

IIDefinition Responsibilityll

Report Card

(New DD Entru_}

Figure 2.6

select a report card from the reporting section of the data dictionary

stack. The following is the standard reporting card. For further

features see the Reports Reference Manual.

24

w

i :i
oi

Reports TM wzHmRwm ,.rRoM_]ACTIVI SION®

For Data Dictionary

I
I
I
I
I
I
I
I

(To edit report button press option key while clicking.)

<h<>

Print

Edit Layout

Edit Script

New Report

Select Report

Chain Reports

li"
• o Install Report Card
li"
!: Help

<p.
i!

Figure 2.7

Drawing Tool

Description

The drawing tool assists in the creation of Data Flow Diagrams.

The tool provides buttons that generate fields to represent External

and Storage nodes, creates a button to represent a Process node and

generates a field to contain the Data Link. These objects allow the data

flow diagram to be searched by button links and text searches. A set of

Macpaint tools is included to add additional text and graphics to the

diagrams.The objects can be modified or deleted at any time. It should

be noted that the user can select the option of using the embedded

drawing tool or they may chose to import into this drawing tool their

favorite format.

Importance

25

=

w

I

_= ='.

The drawing tool provides a map into the design of the project.

This map is a high level plan toward achieving the project goal,

describing the flow of data and the relationship among components.The

drawing tool is the map that guides the creation of the other maps

within the CASE tool.

Sample Example

The following will be a sample of the types of screens that will

be available from the drawing tool. The first is the main card. The

entire drawing tool is completely flexible to support many types of

applications, it will make available through selective buttons the

ability to create and modify standard shapes, such as oval, square etc.

The user can just point the mouse at the buttons and click to create

that shape.

E-
=

i

w

m

26

w

u I Graph Desiqnerl M_nDi_mofDFDDie_ms

u

._J

m

i

m

r •

W

P_OCC§§

Antenna

Pi_OCCSS

Ballon •
System Clock

-O-
f ,,o,., I

Figure 2.8

Notice the icon in the bottom of the screen, this is a sticky note.

When the user clicks on this it will pop open a note window for the

user to collect and record any thoughts on the subject at hand. The user

can then easily tuck these away into the existing diagram, by closing

the window.

The Report Generator is also active in this section of the PMCT.

There are numerous reports that one can select from the PMCT.

Job Aid

All of the accessible functions in the Poor Man's Case Tool have

their own job aids. The idea was to make the initial training time

m

27

m

I

i

i

minimal, and to provide a level of context sensitive help facilities

available to the novice user as well as the experienced user.

h Desi(

Externals are

Shadowed

Rectangles

External Input A I

I I°a_s_rage'sI IPr°c°s°esIno shadowed are Rounded

Rectangles Rectangles

I _ (This is aProcess Box)

IData Storaqe I

@

(E)

(Click on these ='rows, Tryit you might

Figure 2.9

m

28

=-,..

i

m

Data Dictionary Support Environment

Data Dictionary

Description

In PMCT the data dictionary is directly linked to the drawing and

vice versa. It is important and mandatory to establish this link

between graph and dictionary. The data dictionary is a storehouse of

information for data fields. The data dictionary is responsible for

describing many aspects of the total system.The data dictionary

includes many cross references between data elements and program

modules. The cross references also include modules, the reports they

generate, and the variables used in them. The information that the

dictionary contains is broken down into three parts.

The sections of the PMCT

u

i

===

1. Start up procedures

a. Who is doing the project

b. Scope of Project

c. Project Start
d. Scheduled Completion

e o Why is the project being done

f o Who says what the project will

encompass
g. Who is going to pay for the project

w

•

el

f.

g.
individual

Personnel

a. Group Name
b. The Database Administrator

c. Individual member of the group

d. The individuals job title

The company that the individual works for

The address of the company

Phone numbers for contacting the

i

i

29

m

u

m

u

g Variables and Data

a. Project ID
b Group Name doing the project.
C. Variable name

d. Variable length and range

e. Variable type
f, Modules accessed

g. Reports generated

h. Module Creation and Update

Importance:

The importance of the data dictionary is to limit the confusion

ti ._t occurs during major programming tasks. The standards are set up

in the data dictionary that the project will use. The data dictionary

allows everyone access to the standard format of the data and the

standard usage of the data. In this respect the data dictionary directly

supports software development and maintenance.

The next information is the personnel assigned to the project and

the information pertinent to each of those personnel. Notice that the

Job Aids are always accessible from any place.

Put in new Data Dictionary Form

w

w

w

w

w

30

oro_ .-,-t ..

co=p=_ I..t
8_ree_t..-I
oily I-...I

0

.o,kPho.°I..I
Home Phone

Return
to Menu

0

w

i
w

w

Figure 2.10

The report generator can generate reports from the data dictionary.

I
I
I
I-

Print

Edit Layout

Edit Script

New Report

Select Report

Chain Reports

Install Report Card

Xelp

Figure 2.11

31

w

i

m__

w

i

L--

This customizing process is quite simple and flexible in the framework

of the hypercard environment.

Name of Field [
!

Alias

Actual Description

Acceptance Status I

Definition Responsibility I

Access Authority

Validity and Edit Rules I

Consistency Checking [

Reasonableness Checks I

Usage Propagation I

Valldatlon Propagation I

Sort bu le!d Name

"_ function

[]
@

I

[I
CNew DD Entru)

Job Aid

Figure 2.12

m

w

It is an important feature to remember that all screens contain a

link to the job aids for that section of the project. It is also important

to indicate that in the job aids themselves there is the ability for the

end user to have on-line note-taking capability, so they can enhance the

job aids.

w

w

Screen Painter

Linked directly to the data dictionary and contained in the

Reports section of the PMCT is the ability to select fields into a

temporary schema and produce a painted screen or mock report.

32

This

L_

utilizes a tool called Reports. Reports is a simple easy report

generator available inside hypercard.

Implementation Support

Standards

The standard supported by PMCT are NASA Management Standards

for Space Station, DoD STD 2167 and associated companion document

DoD STD 287.

This will be a system and format designed to maintain

coordination of development of project components. A statement of

this standard follows::

w

D

w

.=.

F

w

Figure 2.13

33

r

L_

w

The above is a sample of the the main screen in the on line

version of 2167. Currently the process is in place to move to 2167a

and 287.

Importance

The importance of this aspect of the Tool following this standard

is that it will allow for more structured and traceable code

development. Since this standard will become the model for all new

code development for military projects, government contracting

corporations will be required to present their development work in this

format.This standardization for such a large industry will lead to a

more evenly distributed development process for all software

development undertakings.

w

i

34

:==

w

=--

w

Sample Example

DID Cross Reference

Applicable DID lqo.
>DI-CHAN-8000$ <

DI-HCCR-80030

Figure 2.14

_m
m

E
w

35

=.w="

Compiler Interface

w

The next section of the implementation part of PMCT is the

Compiler Support interface. This would allow the users to select the

compiler of their choice.

Sample Example

m

m

The following is a sample example of the compiler interface card.

I Compilers I

_. Fi,eMakerJob.id _m
Light Speed C Job Aid

Figure 2.15

Reusability Component Library Interface

Description and Importance.

Reusability is not a new concept in the world of software

engineering. Software engineering has reached a "software crisis", (an

overwhelming increase in the demand for software that is reliable,

36

w

m
m,

m

=

i

W

efficient, maintainable, understandable, delivered on time and at

"reasonable" costs), that has brought reusability into the spotlight.This

"software crisis" has made the reusability of software an issue that

must be reconciled. Reuse is the use of previously acquired concepts

and objects in a new situation.

Reusability is a measure of the ease with which one can use

those previous concepts and objects in the new situation."With both

software production costs and the amount of new software produced

escalating annually, the application of reusability to software

development offers the potential for vast improvements in programmer

productivity which will be a key to solving the "software crisis".lf

current trends continue, in the near future many companies that have

not adopted software reuse as a standard will find themselves in a

situation where they can no longer be competitive in the contracts

arena.Boehm 1 has stated that, "the demand for new software is

increasing faster than our ability to supply it, using traditional

approaches."

With systems today being too large for a single individual to

comprehend and increased pressure to keep development costs less

than system complexity growth, and the cost of software being an

exponential function of its size, there is the creation of a no win

situation for software developers using the traditional approaches

referred to by Boehm. This, and the serious shortage of qualified

programmers to meet these demands, will become a driving force

behind reusability.

37

m

v

m.

The Software Engineering Repository Retrieval System (SERRS)

provides a mechanism for the cataloging and retrieval of various

repository components. This system implements the design methodology

of hypertext. SERRS is implemented in XREFTEXT running on top of

HYPERCARD as defined previously.

SERRS was created with the idea of allowing the maximum amount

of flexibility for traversal while maintaining a structured traversal

method, and minimizing maintenance complexities. Flexibility was built

into the basic structure to allow repositories to be added with minimal

structure changes. The basic structure is a modified hierarchical

structure stored as a key word index stack. Each element on the stack is

known as a card. From the top of the structure, forward paths available

lead to more detailed levels of the repository, one level at a time. The

backward paths of the structure are less hierarchical in that all levels

have paths that lead back to the previous level, but there are also paths

that return to the top levels. As the user becomes more familiar with the

stack, a selection can be made from the key word index that allows the

immediate selection of the desired card instead of traversing SERRS from

the top. An asterisk, (*), following a word indicates that this is a key

word for a card containing information specific to the key word.

Selection of this word will provide a forward or backward path to

another level.

m

m
B

W

38

• L __.

SERRS HIERARCHY

=

[_A'BEGINNING _REUSABILITY

I

_Repository

I

_'_SERRS

_RePository

m

Component
Type 1-n

m

w

Figure 3

Source

Figure 2.16

u

39

=

m

=_

m

The first four cards, as shown in Figure 2.16, contain both

introductory information concerning software reusability and an informal

table of contents. The title page and credits for SERRS is contained on

the A'BEGINNING card. The A'BEGINNING card is the highest level of the

hierarchy. From the A'BEGINNING card the user can exit SERRS or select a

forward path to the Reusability card for an explanation of the principles

of reusability, or the Repository card to traverse SERRS. The Reusability

card is only a definition card and exists as a side card from A'BEGINNING.

Because this card is not an intricate part of SERRS, the user must use the

direction keys provided on the top line of the screen to return to

A'BEGINNING. The Repository card details the various repositories and

provides a brief description of the structure of SERRS, with a backward

path to the A'BEGINNING card and a forward path to the SERRS card. The

Repository card is the only means to return to the A'BEGINNING card. The

SERRS card provides a detailed listing of the high level break down of

SERRS, including access to the general copyright and disclaimer

information. The SERRS card can be read as an informal table of contents.

The hierarchy breaks down into three branches from the SERRS card that

will be discussed separately. These branches are: The Component Type,

the Available Repositories, and the Classification Characteristics, (refer

to Figure 2.16).

The Component Type branch allows the selection of the following

component type cards: Artificial Intelligence (AI), Benchmarks, Common

APSE Interface Set (CAIS), Communications, Reusable Software

Components, Database Management, Documentation, Graphics, Project

Management, Ada Software Development Tools (ASDT), and Other Tools,

40

r

w

=__

see Figure 2.17. Each component type card provides a listing of all

components specific to a selected component type. From each component

type card a backward path is provided to the SERRS card, the Repository

card, and to a specific repository card. A forward path to all component

cards applicable to the component type is accessible from the component

type cards (refer to Figure 2.16). The traversal of the component cards is

detailed in the final paragraphs.

m

CAIS

mH--_.

IO__UNICATIONS _USABLEI i
l

Figure 4

Figure 2.17

The Available Repositories branch provides access to the various

software Repository cards that are available within SERRS, (refer to

Figure 2.18). The repository high-level qualifiers are shown in

parentheses corresponding to the appropriate repository. The

41

=

t

repositories include: BMA Math (BMA), BOOCH (BOO), CAMP (CMP), GRACE

(EVB), QTC Math (QTC), and Simtel20 ($20). From a specific repository

card, there is a backward path to the SERRS card. The selection of the

Component Type cards provide the forward path within the specific

Repository cards. These Component Type cards are the same as the

Component Type cards selected in the Component Type branch, (refer to

Figure 2.16). Only the Component Type cards specific to a particular

Repository card are accessible from that Repository card. From the

selected Component Type cards, a backward path can be selected to the

SERRS card, the Repository card, and to a specific repository card. A

forward path is provided to all Component cards under the component

type, see Figure 2.16. Again, the traversal of the Component cards is

explained in the final paragraphs.

I I
IS

Figure 5

L _

E

Figure 2.18

42

L

The Classification Characteristics branch accesses eight

classification characteristics levels of the Ada language. The eight

Classification Characteristics cards that can be selected are: the Generic

Packages card, the Definition Packages card, the Object-Oriented

Packages card, the Tasks card, the Functions card, the Procedures card,

and the Programs card, (refer to Figure 2.19). A backward path can be

selected to the SERRS card. The forward paths are the selection of the

various Component Cards meeting the selected characteristic, see Figure

2.16. Again, the traversal of the component cards is explained in the

final paragraphs.

. =

E :

u
w

!
_pGAENERIC

CKAGES I
FUNCTIONAL

PACKAGES

 TAS SI CT'O Sj CEOURESJ OG MSI

Figure 6

Figure 2.19

Regardless of the path chosen, all paths terminate at an abstraction

of a particular component in the repository, excluding the documentation

component type. With the exception of the Reusable Components card,

43

L_

m

Y

B

v

m

selection of a Component card provides the user with a prologue

explaining the operations performed by the selected component and a list

of all associated files residing in the corresponding repository. The

basic path structure provided for the component cards is a backward path

to a specific repository card, a backward path to the Repository card, a

backward path to a specific classification characteristics card, and/or a

backward path to a specific Component Type card as applicable. Due to

storage constraints, only selected Component cards have forward paths

to the applicable Component Source Code card, which makes up the

bottom level of the hierarchy, (refer to Figure 2.16). From the prologue

provided on the selected Component Card, the Component Source Code

card can be selected from the associated files list and viewed. These

files are identifiable by an "A" following the repository qualifier (i.e.

S20A°BIT). Only a backward path to the Component card is provided from

the Component Source Code card.

In the case of the Reusable Components card, a further

hierarchical break down is provided for math components and structure

components. This further break down is provided because of the

interest in the components falling under these categories. All other

components listed on the Reusable Components card are selected and

traversed in the manner described above, so the traversal method will

not be re-iterated. From the Reusable Components Card, math

components and structure Components can be traversed by the Math

card, the Structures card, a Repository Math card, or a Repository

Structures card. The backward paths for the Math card and the

Structures card returns to the Reusable Components card. The forward

paths from the Math card are to the Math Component Type cards. The

forward paths from the Structures card are to the Structures

Component Type cards. The backward paths from the Math Component

Type cards are to the Reusable Components card, and the Math card.

The forward path is to the Math Component cards. The backward paths

44

w

E--

L_

i

m

q

m

from the Structures Component Type cards are to the the Reusable

Components card, and the Structures card. The forward path is to the

Structures Component cards. The backward path from the Repository

Math card and the Repository Structures card is to the Reusable

Components card. The forward path from the Repository Math card is to

the Math Component cards. The forward path from the Repository

Structures card is to the Structures Component cards. Once either the

Math Component cards or the Structures Component cards have been

selected, traversal of these cards occurs exactly as traversal of the

Component cards in the previous paragraph occurred.

Planning Tools

The same planning tools are available with the addition of time

management. Added also is the feature of time management with the

addition of Focal Point I1. Refer to the Focal Point II Manual and Job

Aid for additional information on the features of this tool. Put in

section on MACPLAN.

Figure 2.20

m

m

45

=

Description.

The addition of Focal Point II to the planning scenario is to allow

for a more flexible monitorable planning process. Before discussion of

the planning process it is important to understand the importance of

monitoring of the planning process in the overall Software Engineering

Scenario.

The Software Maturity Model

and The PMCT

In Section I of this report the subject of the software assessment

was discussed. This section will be on the inclusion of major parameters

to assist in the collection of the data for the PMCT. A major focus of

activity will be on the importance of applying technology to the

improvement of the state of practice in software engineering. The goal of

this program is to develop an experimental software engineering platform

that can serve as a research vehicle to carry software research into the

90's and beyond. This project is a first step in establishing this research

program. There are two thrusts to this program, one is Automation, and

the other is Quality.

The introduction of quality in the software process is quite a new and

unproven idea. This paper suggests some criteria based on tried and proven

methods for quality increase and the application of these criteria to a

software project. Quality improvements can be made in the software

engineering process, if these criteria are built into the supporting

environment. The foundation for a system that will support traceability must

include a mature software process model. For the purposes of this paper,

software process modeling is defined as a methodology that encompasses a

46

z--

--=

representation approach, comprehensive analysis capabilities, and the

capability to make predictions regarding the effects of changes to a process.

.Watts Humphrey 1 describes five levels of software maturity, and it is

important to understand this maturity to appreciate the necessity for

traceability in a support environment. These five levels of software maturity

are:

1. Initial - Until a process is under statistical quality control, orderly

progress in process improvement is not possible. While there are

many degrees of statistical quality control, the first step is to

achieve rudimentary predictability of schedules and cost.

Approximately 87% of the companies observed in a study by the

Software Engineering Institute were at level one in the maturity
model. One of the contributing factors to this grade level is the

absence of traceability 2.

2. Repeatable - A stable process with repeatable levels of quality

control, by initiating rigorous project management of commitments,
cost, schedules, and changes.

3. Defined - The organization has defined the process as a basis for

consistent implementation and better understanding. At this point

advanced technology can be usefully introduced. In the above study

done at the Software Engineering Institute, there were no companies

at level three or above, only a few projects within given companies.

4. Managed - The organization has initiated comprehensive process

measurement and analysis. This is when the most significant quality

improvements begin.

5. Optimizing - The organization now has a foundation for continuing

improvement and optimization of the process.

A contributing factor to achieving level four and level five in the

maturity model will be the introduction of measurement into the software

1Humphrey, Watts, Managing The Software Process, Addison Wesley, 1989.
2Humphrey, Watts, Kitson, D.H., Kasse, Tim, The State of Software Engineering Practice: A
Preliminary Report, Technical Report CMU/SEI-89-TR-1, Feb 1989.

47

=

m

m

process, and the utilization of these measurements to redefine and optimize

the software engineering process. While there are other factors involved in

the maturing of the software process, the primary objective is to achieve a

controlled and measured process for the foundation of the product

development. In the development of the Software Assessment Procedures 1,

the Software Engineering Institute tried to establish guidelines that would

help software developers discover the level currently achieved, and to

prescribe a formula for moving from one level to another. Requirements

traceability, and the importance of the automation of requirements

traceability as an integral part of the quality software process will be a

major contributing factor to the progress in level of maturity of a software

organization.

There is an increased demand for the inclusion of traceability at all

levels of the software development process. Computer Assisted Software

Engineering research has placed too much emphasis on trying to answer

the questions concerning software life-cycle support, and not on trying to

define what the software process is all about. It is of utmost importance

to carefully distinguish between the idea of process and life-cycle. A

process will be thought of as an ongoing activity, where a life-cycle will

have specific beginning and ending tasks. The concept of traceability in a

product belongs to the life-cycle aspects of the project, but the idea of

traceability is a process that must transcend the individual process. It

must be an integral part of the software development environment, and it

must become an integral component of the idea of quality in the software

engineering process.

1A Software Assessment for Government Contractors

48

H

If you would ask a fellow worker, student, or professor the

question, "Are you for quality?" , they would overwhelmingly respond

Yes. If everyone is for quality, and quality is an integral part of the

software process, then why is the production of quality software so hard?

The problem of quality in the production of software stems from adoption

of the philosophy of appraisal as a means of producing good quality

software, instead of prevention. "Quality is conformance to

requirements". 1 Phil Crosby symbolizes the process of quality by the

establishment of four quality absolutes. These are

1. A Definition of Quality -

2. A System for Quality

appraisal

3. Performance Standards for Quality- Zero Defects

4. Measurement to the Performance Standards - The Price of

Nonconformance.

Conformance to requirements

Prevention instead of inspection and

Crosby describes a process by the following diagram.

Z
w

1Crosby, Phillip, Quality Improvement Through Defect Prevention: The Individual's Role. Phil
Crosby Associates, Inc., 1985.

49

=__

Quality Performance

Standard

Customer

Inputs

Procedures/
Process Definition

MOOEL Customer

Internal Actions Approved

Output

Equipment/
Facilities

Figure 2.21

Training/

Knowledge

w

This is a simplistic diagram of what is usually a more complex

phenomenon. It is important to understand that the software process is

the foundation for quality, and the process is the target for knowledge

capture in a knowledge-based CASE Environment.

The term CASE refers to a computer system tool which provides the

capability to assist in the software development process, hence,

Computer-Assisted-Software-Engineering. The proliferation of CASE

tools has fairly recently met with a tremendous amount of enthusiasm

from the software community. There are lots of good CASE tools that are

present in the marketplace today. The question arises "why another CASE

Tool?" The idea behind the Poor Man's Case Tool (PMCT) currently

under development at the University of Alabama in Huntsville is to

establish a research tool for exploring new ideas about Software

Engineering. The CASE vendors while providing a critical service to the

software industry, have not provided a low cost approach to an

50

w

experimental platform for the study of the software process. The idea of

an experimental platform to explore new techniques, methods, policies,

and environments gives the software engineering community the ability to

try new approaches that would not be feasible within the constraints of

the software process. The fact that CASE tools are in great demand is

partially due to the change in software needs. Programs should be

efficient, easily maintained and modifiable, however this is not always

the case. Large Embedded Software Systems such as the software for

NASA's Manned Space Station and the software support for the Strategic

Defense Initiative call for the support of an efficient organizational tool

designed to support the software engineering process. Many times, the

process and the product are poorly documented and this leads to problems

in the conformance/non-conformance determination. The use of

knowledge-based CASE tools allows documentation to be generated as an

active part of the system construction and not be a burden to the overall

purpose. Therefore, the integration of, change of, re-evaluation of, and

implementation of the entire system should be performed with the

minimum amount of effort. A fundamental objective of the research

program at University of Alabama in Huntsville is the introduction of

quality as a measurable component of the software support environment,

and the inclusion of metrics to support level of improvements in the

Software Assessments.

In the first version the pert chart was the significant portion of the

planning process. This is implemented with MacProject II. It features

schedule charts, calendars, resource tables, fixed cost tables, cash

flow charts, and task time lines. The schedule charts are made of task

51

bosses joined together with lines to show the sequence of events.The

critical path is marked with a bold line, so the analyst can easily see

which task has to be done next for progress to continue smoothly.If a

task is a major point in the project it can be marked as a milestone.

As the project progresses tasks that are completed can be marked

finished.You can list up to eight resources per task, and because

different resources will have different work weeks, work week

calendars are provided.In each project or subproject there are eight

calendars available, each of these calendars can be assigned to a

particular resource.MacProject II uses the calendars to calculate the

expenses per week, and that figure is entered automatically in the cash

flow table.The fixed qost table is used for one time expenses or income

such as tools, equipment, and loans. The fixed cost table is added to

the cash flow table, so that the planner will know at any one time how

much money is available. The task time line is a graph showing the

progress of the project. It shows the percent completed of each task.

This gives a user a good idea where he stands and which tasks need

more attention. Any changes made in the number of resources or cost

will automatically be reflected in the appropriate tables and graphs.

w

52

w

Section III

Requirements Tracability in the

Poor Man's CASE Tool An important task in the systems development

process is to determine if the top-level software requirements are correctly

represented in the final level of delivered product. Requirements Traceability

is a generic term used to refer to tracking software requirements through to

final code. This process usually starts with the scanning of the software

development document to extract the corresponding software requirements

and the corresponding design. For a large scale software project this can be

an enormous volume of collected data.

There have been several attempts at the automation of the Requirements

Traceability Process 1234 Using more traditional approaches the idea of

traceability belongs in the domain of documentation and bookkeeping. ARTS 5

is described as a bookkeeping program that operates on a database consisting

of system requirements and their attributes. While the storing of the

bookkeeping information is important in the traceability process, the

knowledge associated with traceability needs a computational paradigm that

is similar conceptually to the traceable process. This natural mechanism is

found in the explanation mechanism of knowledge based systems. Reifer and

Marciniak6 suggest a knowledge-based approach to the software life-cycle

1Dorfman, M, and Flynn, M. ARTS- An Automated Requirements Traceability System, The
Journal of Systems and Software, Vol. 4,No. 1, pp 63-74, 1984.
2Sciortino, J, Dunning, D., Proceedings of the AIANIEEE 6th Digital Avionics Systems
Conference. Baltimore, Md. 1985.
3pirnia, S.,Hayek, M., NAECON 1981. Proceedings. pages 389-394.
4LaGrone, D., Wallach E, Requirements Traceability using DSSD,Tooling up for the Software
Factory, Feedback 86, Topeka, KS.
5Dorfman, M, and Flynn, M. ARTS- An Automated Requirements Traceability System, The
Journal of Systems and Software, Vol. 4,No. 1, pp 63-74, 1984.
6Reifer, D, Marciniak,J. Software Acquisition Management, John Wiley Press To Be Published.

53

w

and imply that knowledge will become a more integral part of the entire

acquisition and delivery process for all weapons systems. The following

diagram is a sample of the Reifer and Marciniak knowledge-based approach to

the life-cycle. Carefully note the iterative nature of this approach, and how

that through each iteration that concept extract and knowledge are important.

Requirements are knowledge intensive and aspect of traceability of

requirements is an important contributing factor to the knowledge that will

be necessary to produce traceable and predictable systems.

_Ir,_onts

Atmlysle

__i_c
Problem

Chat_tedetfee

Legend

m _flq, JD

Requlrem_ts Oe,.Ign

O_gn

t,I
Y

I Find Concepts
to RelXe I.mt

Knowledge

I I
Iterate I

I I

,--j[-[Sl_lflcdom _:ec:Jfl_o_

Iterate

i Teet

•.e_ i H_,-,- j
Toot

I I

I I

I I

Figure 1R.3 Kno_le_lge 9yetem Deve_o_eflt in the Sofivmre Life Cycle

Figure 3.1

This will place a demand on the knowledge engineering aspects of the

software product development.

In conventional approaches to traceability it was up to the developer to

keep a traceability mapping from requirements to test item, and to

demonstrate conformance to the customer. A key issue in the inclusion of

quality in a process is the measure of conformance/nonconformance to

54

v

requirements. This is usually done in the form of a traceability matrix.

However the drawback of the traceability matrix is inconsistency in the

knowledge associated with the inherent chaining structure. This chaining

structure is naturally found in production rule knowledge-based systems. A

more in-depth discussion of production rule-based systems, and the

capability of a production rule system to explain its reasoning may be

appropriate for the reader 1 2

There is an increased demand for the inclusion of traceability at all

levels of the software development process 3. The delivery of the traceability

mappings of requirements to product is often delayed until the latter steps in

the product development cycle. Quite often these mappings provide no insight

into the overall application of quality principles of Requirements

Engineering. Standards and practices usually include ways to translate top-

level requirements into some written form. Few projects establish

traceability because of the ambiguities of the written software

specification. Each prose paragraph may contain a requirement or several

requirements and likewise a requirement may be referred to by several

paragraphs. Even though these references are stored in an automated

bookkeeping form, this falls short of the real objective for traceability in

that the representation is a conceptually unnatural format. Traceable

requirements in the traditional format do not establish conceptual linkage of

requirement to requirement much less form clusters or groups of

requirements.

1

2

3DOD-STD-2167a,

55

m

The clerical burden placed on the project often deters the progress of the

product development. In conventional approaches the traceability was an

added burden, this approach introduces traceability as an integral part of the

way in which the designer thinks of the knowledge that is associated with the

design process. It is not a mechanism that is used just to show customer

satisfaction. Projects implemented with PMCT(The Poor Man's Case Tool)

will not move forward unless driven by the knowledge-based model. If the

tools for traceability are used to enhance the project development then the

clerical burden will be reduced or at least distributed over a larger portion of

the project life-cycle,

Computer-Aided Software Engineering research has placed too much

emphasis on trying to provide tools to support the bookkeeping of a software

life-cycle, only to find that the life-cycle had no mature software process to

give it foundation. It is important to carefully distinguish between the idea

of process and life-cycle. A process will be thought of as an ongoing activity,

where a life-cycle will have specific beginning and ending tasks. The concept

of traceability in a product belongs to the life-cycle aspects of the project,

but the conceptual foundation of traceability should be an integral part of the

knowledge associated with, and captured by, the process and the product.

This inherent linking of pieces of an analyzed process into a synthesized

solution transcends a one-time application of the software process. The

knowledge capture of traceability must be an integral part of the software

development environment and the quality factors in the software engineering

process. In the software maturity model 1 it is crucial that there be

measured improvement in the software process.

1Humphrey, Watts, Managing The Software Development Process, Addison Wesley, 1989.

56

w

Quality in the software process

If you would ask a fellow worker, student, or professor the question, "Are

you for quality?", the overwhelming response would be "Yes". If everyone is

for quality, and quality is an integral part of the software process, then why

is the production of quality software so difficult?

The problem of quality in the production of a product stems from adoption

of the philosophy of appraisal instead of prevention of defect, as a means of

producing good quality software. "Quality is conformance to requirements".

Phil Crosby 1 symbolizes the process of quality by the establishment of four

important quality absolutes. These are:

1. A Definition of Quality - Conformance to requirements

2. A System for Quality - Prevention instead of inspection and appraisal

3. Performance Standards for Quality- Zero Defects
4. Measurement of the Performance Standards - The Price of

Nonconformance.

Conventional wisdom has traditionally held a different view of quality. A

comparison of the absolutes in Crosby's method to conventional wisdom will

help understand the concept of quality through defect prevention.

CONVENTIONAL

WISDOM

Goodness

Appraisal
Close Enough
Indices of Non-

Conformance

QUALITY ABSOLUTES

REALITY

Definition Conformance to

Requirements

System Prevention
Performance Standard Zero Defects
Measurement Price of Non-conformance

1Crosby, Phillip, Quality Improvement Through Defect Prevention: The Individual's Role. Phil
Crosby Associates, Inc., 1985.

57

Crosby 1 describes a process as a series of actions or operations

conducted to produce a desired result. Work is a process, and the individual

components that make up work are also processes. To produce an output or a

product that a customer expects demands that the requirements needed to do

this work be clearly understood.

This idea is summarized by the following diagram.

w

w

Entry Criteria Exit Criteria

w m

R R

e e

r r

e •
I"11 m

e e
n n
t t
S S

Figure 3.2

A process is a series of steps to get from entry criteria to exit criteria.

These criteria are called requirements. The next diagram shows the

surrounding support necessary to make a process executable. It should be

pointed out that the support environment is only a means to an end, and not

the end in itself.

58

w

Quality Performance
Standard

Inputs

Process

Internal
Actions

/
Procedures/
Process
Definition

Outputs

Equipment/ Training/
Facilities Knowledge

Figure 3.3 Crosby's Model of Process

This is a simplistic diagram of what is usually a more complex

phenomenon. It is important to understand that the software process is the

foundation for quality, and the software process is the target for knowledge

capture in the CASE Environment, if the environment is to be knowledge-

based. The term knowledge-based system is an overused and little understood

term. The focus of this research project was not to advance the state of

practice in knowledge-based systems. However, it is important that this

knowledge be included, be captured, and be the prime enabler of change in the

overall software process.

The term CASE refers to a computer system tool which assists in the

software development process, hence, Computer-Aided Software Engineering

Environment. CASE, more often referred to as CASE(Computer Assisted

Software Engineering) tools are pervasive in today's marketplace. The

question arises "Why another CASE Tool?", and more importantly what does

this have to do with traceability The PMCT will provide a low-cost(no-cost)

research t0ol for exploring new ideas about Software Engineering. In the Poor

59

=_
m

w

!

w

i

M

n

Man's Case Tool traceability through knowledge-based approaches is the

foundation for the computer assistance. CASE vendors while providing a

needed service to the software industry, have not provided an approach to an

experimental platform for the study of the software process, much less an

economical platform. The idea of this experimental platform to explore new

techniques, methods, policies, and environments, gives the software

engineering community the ability to try new approaches that would not be

feasible within the constraints of the software process using the

conventional tool support.

The fact that CASE tools are in great demand is partially due to the

demand for change in software development. Tennant and White 1 describe the

current thought about computing and the future of computing in the following

terms. "Knowledge is a prime enabler of change in an age of computational

abundance". The use of a knowledge-based approach allows documentation to

be generated as a by-product of the knowledge associated with the system

construction process, and will not impose a burden to the product developer.

The following section shows some of the sample screens from the PMCT

and shows the importance of measurement in the quality of the produced

software. It is important to understand where in the overall environment the

traceability mechanism fits. The First Screen in the PMCT is the Main Screen.

This screen is shown here is to emphasize the importance of the separation of

process modeling issues from the other aspects of the software development

process. In the utilization of the PMCT, the first step is to establish the

software process model with which the project will be built. Humphrey 2 and

1Tennant, Harry, White, John, W. Knowledge as a Prime Enabler of Change, Texas
Instruments Engineering Journal, September 1989, Vol XXX Number XXX
2Humphrey

60

w

w

=
w

w

n

m

w

L_

Crosby 1 insist on a reliable predictable process to direct the development of

a

Me

Process Model

Methodology

Planning Tool
Reuse

Repository

Xelp

th_s

Completely Case Sensitive I

100000¢

Figure 3.4

The user must select a Software Process Model, hence the entire

automation mechanism will be driven by the process model. On the first

occurrence of the selection of the process option in the above pull down menu,

the PMCT would direct the user to the following help screen to provide

preliminary information for the project. There are certain project related

issues that are important to the requirements capture that must be

established at the beginning of a project. The following diagram represents

in a Warnier-Orr 2 Diagram suggesting the initial set of criteria in the

beginning of the software development project.

L__
w

1Crosby

2Hansen, Dave, Data Structured Systems Design, Ken Orr and Associates Press, 1982.

m

61

L

m

= =

W

L _

Knowledge Base Generation

w

w

Figure 3.5

If the user chooses to ignore the process option then the system will not

proceed. It will enter remedial mode to help the user construct the necessary

process model. This screen is provided to suggest proper usage of the

existing structure in the PMCT. The sequence of events form contract award

is the creation of the software development plan, the establishment of

configuration libraries, the establishment of reusable software repositories,

the generation of the project knowledge base, and then the establishment of

task assignments for the project participants.

Inherent in the underlying structure of the PMCT is concept of preferred

trails. The PMCT is implemented using an interactive hypermedia

environment and in the traversal of this hypermedia environment the PMCT

tool designer can customize these preferred trails to fit the existing project

62

L

w

w

at hand. By the monitoring of these preferred trails the designer may supply

hints and suggestions for proper direction when the user uses the tool in an

unconventional manner. This monitoring mechanism allows the user to

capture the data necessary to later adapt and improve the software process.

This adaptation mechanism was a necessity in the software process maturity

model, and is an important facet of the capture of the knowledge associated

with the construction of requirements.

The developer starts with a plan, but the most important part of this plan

is the selection of a process model. In the PMCT the current models supported

are DoD-Std-2167a, or The NASA Space Station Management Plan. Once a

process is selected the developer can then tailor this process to suit the

nature of the problem at hand. This project tailoring process is important

because it defines the deliverables that the developer must deliver. These

deliverables dictate the type of knowledge that must be an integral part of

the knowledge base that will support traceability. Consider the diagram of

the environmental model for 2167a. Notice that the full model of 2167a

contains under the topic Software Operations and Support Documents the

acronym CSOM. This stands for Computer Systems Operator Manual. If this

application was a proof-of-concept prototype, it would most likely not be

necessary to produce a CSOM, and if it was really necessary it would probably

be descoped from a CSOM that would support a fully fielded production

system. Exclusion of the irrelevant parts of the product deliverables can

reduce the amount of knowledge that is important in the knowledge capture

portion of a software project.

63

w

w

w

,,m-

41.4

E
1.0 Dod-STD-2167& Prooesg K_viromm_eatel Hods| | _,_5_

in qhe derno¢_str&tton of the J_i

Prolimit_ery use 05' h_pevmed_o, a_J the

System -- __ k_q_t of" t.hls media on

$osoitiostion _ Soft,were Produ©ts So_&ve FJ_bsed_k_g, ff_e

- _ _ tt is t_po_nt to have an

Fi_l S-,tem _ "% _ / vfl] t_JJce the stifle (_4(_re
__ " _ _J. / / of 2167. and _b'od_* th*

"°*ro - J-.. n-_.'

_ O_ere_lo_ e_d

Beseli_Coz_i_uretiot_ Control) _/ _ S_ppor_
F_t_t_o_l Bueli_e _l_ Do_mes_tg_j_

Alloctte4 B_lell_ CSOM

Development _ Cos_ftguretto_ _

Product Bsseliz_ b_Pl'f c_
¥Sl'I

CRISD

Figure 3.6

This helps establish the documentation that is required to meet the

standard 2167a for the given project. However in the application of a

knowledge-based approach it is much more than just the inclusion of

documentation. It establishes the framework for the construction of the

knowledge bases that will contain the individual Computer Systems

Configuration Items involved in the delivery of the final product.

Building Requirements that are Traceable

An important part of this activity is the fact that specifications,

designs, and implementations are built through the construction of the

knowledge base. Since the concept of process is so important in quality

software, the knowledge base must be based on some process model. It is,

therefore, important that a system of prevention be put into place. To assist

the software developer with the task of prevention, the knowledge associated

with producing Zero Defect Software should be available in the form of a

knowledge base, so that the software engineer can have access to the latest

64

m
w

w

w

W

w

.m

w

data, knowledge, and documentation. To establish such a system Crosby 1

suggests five requirements of this system. These are:

Clear Requirements

Well-Defined Process

Proof of Process Capability

Process Control

Policies and Systems for defect prevention

Requirements Traceability is a method of demonstrating to the customer

Crosby's fourth quality absolute, the conformance or non-conformance

of the requirements of the product being produced. It is also a framework

in which knowledge can be captured about the process so that improvement

can be made in the process. Usually in the development of Applications

Software this is demonstrated by some after the fact mechanism that will

show the links between the final product documentation and the requirements

document. This is usually done by the means of a requirements traceability

matrix. In DoD-Std-2167a, the Department of Defense has mandated

traceability of requirements as a critical required component when delivering

Mission Critical Computer Resources. Requirements traceability is a method

to ensure that not only is a software system complete, but that it is also

correct. It demonstrates paths from requirements to code that the developer

can trace in either direction. These traceability links are essential in the

verification of the component in question, but are also a valuable tool in the

assessment of software changes to that component.

In light of the discussion of quality and Crosby's four absolutes, the

problem of the monitoring and mapping of conformance�non-conformance

from the process to the product is an important issue. In the use of static

1Crosby, Phillip, Quality Improvement Through Defect Prevention: The Individual's Role. Phil
Crosby Associates, Inc., 1985.

65

v

w

v

L _

documents this is quite difficult. Here the concept of active knowledge bases

as software requirements are introduce into the experimental platform. It is

the building of these knowledge bases that represents the software

specification process. PMCT produces documentation as a by-product of the

knowledge capture process. Instead of being a document for traceability, the

specification for a system is an active component in the knowledge base, and

should be used to enhance the design process. The inclusion of traceability

will be implicit in the construction of production rule knowledge bases. This

knowledge base is executable and the traceability is provided through the

explanation functions of the expert system tool selected. There are typically

two types of questions that an acceptable expert systems should be able to

answer about the reasoning process. Note that these questions are not

answers to query of a database containing project information, but about the

supporting reasoning process itself. These questions are:

Why did you arrive at this conclusion?

How did you derive such an answer?

These also are two important issues(questions) in the conceptual

framework of traceability:

1. Why is this component necessary to confirm this requirement?

2. How does this component trace to its requirement?

The following shows a Computer Systems Configuration Item(CSCl) in a

real-time embedded system, created with the PMCT.

w

66

w

T

w

Module 13

Module 66

19

Module 36

Module 43

56
Module 59
Module 73

Design #75

n #76

Design #27

Design #27

Design #13

Requirement #1

uirement #2 15

Requirement #3

: ! Figure 3.7

Knowledge Structure of CSCI 15

The rule base in the production rule system would be:

m

w

r_

m

w

--- Rules for Requirements #3
If Module #56 and Module #59 and Module #73 then Design 13

If Design #27 and Design #13 then Requirements #3

--- Rules for Requirement #2

If Module #66 then Design #76

f Design #27 and Design #76 then Requirement #2
If Module #19 and Module # 36 and Module #43 then Design #27

--- Rules for Design #1

If Module #13 then Design #75

If Design #75 then Requirement #1

--- Main Controlling Rule

67

v

w

w

If Requirement #1 and Requirement #2 and Requirement #3 then
CSC115

This example contains three major requirements which decompose into 4

designs which decompose into 8 main high-level modules. The knowledge base

provides the proper framework for configuration control, and this knowledge

plays an integral part in the product development . Each CSCI and the

components of the CSCI are defined, placed in the reusable repository, and put

into the active knowledge base which reflects the product to be delivered. As

each CSCI is deemed necessary, it is entered into the knowledge base. This

would provide the expert systems shell with a goal or hypothesis. The goal of

the above knowledge base would be to prove that CSCI 15 fully meets the

logical and physical criteria to make CSCI 15 true. As each requirement was

added to the functionality of CSCI 15, an entry would be made into the the

knowledge base. One of the first activities in the delivery of CSCI 15 would

be to create a knowledge base with a simple structure as shown in the

following figure.

m

m

Figure 3.8

The diagram in the Figure 3.7 only represents the structure of the

knowledge base and not some of the actual contents of this Knowledge Base.

The structure does not reflect any criteria except the customer explicit

requirements that are called for in the Request for Proposal or the proposal

negotiations.

68

=

--"-Jr

m

Total

Requirement #3

IspDO_St,,=_+_.l

r°Vldret aLftwa re I_ _iiiiiiiiiiiiiiiiii_i!i_ii!iiiiiiiiiiii_iiiii_i_

+,o iiiiiiiiiiiiiiii!i!iiiiiiiiiiiiiiiiiiililililiiiiiiiiiiiiii!iiiill
H Implicit In _!i!!iiiiiiiiiiii:iiiiiiii

_Requlrement _ _;_ _

J ii+i+!i!iii!iii',i
iiii!Miiiiiiiiii!i i::!i!i!i!i!ii!ii!iiiii!ii!i!!i!iiil

[
Real

_odule _,ll __,ulrementCl ++++l

i.o,u,. (o.,,+.
odule 73

Figure 3.9

In the light shaded area in the above figure is another important aspect of

the concept of applying a knowledge base to the software specification

representation. The only requirements in the product documentation is the

real requirement #3. However it is important in meeting contractual

obligations that there are written requirements but also other types of

requirements. This problem is described in Dorfman I quite well. Other types

of requirements are standards that must be met, support software that must

be delivered, specific grades of personnel that must be assigned etc. All of

this knowledge is added into the knowledge base, before requirement #3

becomes complete. In conventional approaches 234 the the inclusion of

different types of knowledge is often awkward, if not impossible.

1Dorfman, M, and Flynn, M. ARTS- An Automated Requirements Traceability System, The
Journal of Systems and Software, Vol. 4,No. 1, pp 63-74, 1984.

2Dorfman, M, and Flynn, M. ARTS- An Automated Requlrements Traceability System, The
Journal of Systems and Software, Vol. 4,No. 1, pp 63-74, 1984.

3Sciortino, J, Dunning, D., Proceedings of the AIAA/IEEE 6th Digital Avionics Systems
Conference. Baltimore, Md. 1985.

4LaGrone, D., Wallach E, Requirements Traceability using DSSD,Tooling up for the Software
Factory, Feedback 86, Topeka, KS.

69

t_

L_

m

There are two basic chaining mechanisms that are important in the

building of production rule knowledge based systems. These are backward

chaining and forward chaining. Backward chaining starts with a goal and

tries to determine if all of the intermediate goals and premises of the goal

are true. It searches the "then" part of the knowledge tree for a "then" clause

that would match the overall goal. In our example CSCI 15 would be the goal

and the three requirements necessary to satisfy that goal would be the

intermediate goals. These intermediate goals are necessary to prove that goal

true. The following figure shows by attaching numbers to each node the order

of execution of the search of the knowledge base using backward chaining.

Module 13 in #75
3

7

6 Requirement #1 2
Module 66

n #76
5

19 9

Module 36 Design #27 _Requirement #2

Module 43

Design #27 13

uirement #3

#13
56 15

Module 59 16
Module 73

17

14

15

0/Oo/o%

Figure 3.10

In determining the traceability of components of a system, one would use

backward chaining, because it is important to verify that the high level

hypothesis is true. The reasoning mechanism would assume that CSCI 15

70

was true and proceed by the numbers to try and verify or disprove that

hypothesis. The three requirements are now intermediate goals that must be

true for the final CSCI 15 to be met. This is quite a simplistic example for

illustrative purposes, and does not have a situation in which requirements are

interdependent, but there is no reason why such a structure cannot exist.

As each requirement is addressed in the design processes, the knowledge

base is expanded. The concept of explanation 1 in knowledge-based systems is

one of the unique features of such systems. Consider the following diagram.

w

NotComplete

_ Section Complete

v

..,..

=

z

w

Module36 Design#27
Requirement#2

#27

Requirement#3

Figure 3.11

The areas with black background indicate that a section is still in

preparation. Questioning the knowledge-based system as to the status of

CSCI 15, it would reply that CSCI 15 is not met. Further inquiry using the

Why option of the explanation facility would explain that Requirement #1 has

i Harmon, P, King, D, Expert System, Artificial Intelligence in Business, John Wiley Perss,
New York, 1985, page 16.

71

m

been meet, but that Design #27 is still not satisfactory to complete

Requirement #2 or Requirement #3. All of the components of Design #27 are

complete except Module #36. If the system was asked, "How did it arrive at

this conclusion?", it would explain that Module #36 was necessary to

complete Design #27 and that Design #27 was necessary to complete

Requirement #3 and Requirement #2, and that was all a part of evidence need

to arrive a true hypothesis for CSCI 15. If this was a complex system, there

could be hundreds of cases that could possibly contain this scenario. It is

very difficult to reason about that kind of information in the bookkeeping

style of a requirements traceability matrix, even with the support of the

project databases 1234 in more automated scenarios. By capturing the

requirements, design and implementation as premises in a knowledge base,

the specification becomes an active component in the system and not just a

passive part of some boring documentation. The documentation stays current

because it is an active part of the design process.

There is another way to use the knowledge captured in the existing

knowledge base. It was not until after the knowledge base was built in the

first attempt that this feature was discovered. The hypothesis not met in the

backward chaining of the knowledge base are known, but what is really

important is all of the affected sections of the entire product from a given

module, design, or requirement. Data-driven or forward chaining knowledge-

based systems reason from premise to conclusion (the search of the if portion

1Dorfman, M, and Flynn, M. ARTS- An Automated Requirements Traceability System, The
Journal of Systems and Software, Vol. 4,No. 1, pp 63-74, 1984.
2Sciortino, J, Dunning, D., Proceedings of the AIAA/IEEE 6th Digital Avionics Systems
Conference. Baltimore, Md. 1985.
3LaGrone, D., Wallach E, Requirements Traceability using DSSD,Tooling up for the Software
Factory, Feedback 86, Topeka, KS.
4

72

of the knowledge base is first), instead of from hypothesis to premise

(searching the then portion first) as in backward chaining. This could be

important in assessing the impact of a design change on the entire system.

w

w

Module 36 Design #27
drement #2

Design #27

Requirement #3

Figure 3.12

The impact of module 36 on the entire system could be determined by

query the knowledge base. It is certain that module #36 impacts Design #27

in Requirement #2 and #3 in this example. In the example instead of trying to

determine if CSCI 15 is correct and using backward chaining to go from goal

to input, search will start with the if section of the knowledge base and

determine what sections of the knowledge base are affected by that module.

By using a production rule knowledge base concept, it is possible to support

both top down and bottom up design. This is a simple example but can be

quite useful in assessing the impact on a product.

The knowledge base approach is also helpful from another different

perspective. The project manager or software engineer can use the knowledge

73

_B"m

_v

i

=

w

base as a Project Planning tool. In project planning it is traditional to use a

Pert chart or a Gantt chart as a Project Planning. tool. Suppose that the

structure above was the finalized structure that accurately represented the

development of CSCI 15. In the early stages of the construction of the

knowledge base, it might not be so clear as to the evolving structure. At this

point the manager can use the knowledge base along with some available tools

such as spreadsheets, pert charts, and other planning tools to come up with a

more accurate estimate. In the early stage of the project management will

develop a forecast of the timeline and the people power involved. At this

time the knowledge base can be use as a simulation tool. The project manager

could construct a imaginary form of the project knowledge base. Assume that

the project was envisioned to be of the structure that follows.

m Figure 3.13

At this point in the project the project manager would use this structure

to help prepare the software plan. There could many anticipated scenarios

involved in the preparation of what would be an acceptable structure in the

74

_r.W

w software process.

Software Development as proposed by Dr. Bar_ Boehm.
Cumulative

coat

_k Prognma

through

atepe

Determine

objectives,
elterntives,oonM taints

The following diagram is a sample of the Spiral Model of

Evak, ate alternatlvu

identify, rmmlve risks

Review
Anely-

I Protctyl_Commitment sis I

Requirements plan ""-
Life cycle plan Concept of

operation

Development

plan

nKlulrements

ulrements
validation product

design

Integration Oellgn validation

and test plan and verification

integration
and test

modeie

Implementation Acceptance
test

benchmarkm

Dot4dktd
danlgn

Coda

Unn
test

Develop, verify
next-level product

Figure 2.18 Spiral Model of the Software Process

Figure 3.14

In this model the first step is to prepare requirements plans, and life-

cycle plans. This process starts just to the left of the center on the west

pointing axis. Each time the spiral proceeds across the north pointing axis

the next step is risk analysis, and then prototyping. Each turn of the spiral

the risk analysis becomes more and more critical. Traceability has not

75

=

E

traditionally been consider a part of the calculation of the risk associated

with the turning if the spiral, however if the concept of traceability was an

integral part of the preparation of these risk analysis, and this knowledge

associated with the risk was attached to the executable traceable knowledge

base, then the evaluation of risk would first be more manageable, and more a

part of the preparation of the requirements, design and implementation of the

software product.

Certainty Factors represent the confidence in a piece of evidence. There

are numerous ways of representing certainty factors. Assume the use of

uncertainty factor such as the uncertainty factors of Emycin 1. as represented

in the following diagram. Often it is difficult to communicate uncertainty in

the software development plan. By using a knowledge base that allows for

manipulation of the uncertainty factors, this presents a help feature for the

manager and software engineer to provide a common grounds for

communication of issues that are related to risk. The following figure is a

sample of two ways to attach certainty to rule base. These two ways are to

have certainty factors that range from -1.0 to +1.0 or to have certainty

factors that range from 0% to 100%.

B

L

= =

1Buchanan, B. and Shortlife, E. Rule-Based Expert Systems: The Stanford Experiment

m

w

76

Definitely
Not

Almost

Certainly
Not Probably

Not
Sllght
Evidence Probably Deflnlte

Ignored

m

Alternative

(P/o 100%
1

Figure 3.15

In the following diagram the manager has a high degree of certainty that

requirement #1 and requirement #2 can be met. Although it is originally

conceived that reuse of design #27 would facilitate the implementation of

requirement #3, there is still problem with design 13. This could be a

critical timing problem, or perhaps the technology at proposal time did not

even exist. In the execution of large military system, the life-span can

sometimes be as much as 20 years and at conception time the technology

might not even exist, implying that the user might be counting on a technology

innovation to occur. This presents a high risk endeavor, and should be treated

with caution.

77

B

w

v

M

==

CF = 90

Design

Design

uirement

CF = 90

uirement

CF = 60

Figure 3.16

However, the ability to introduce uncertainty factors in the the

project knowledge base early in the project presents a new way to view

the project cycle. By using the execution with uncertainty and

explanation capability of a knowledge base the project manager, or

software engineer can simulate the execution the Computer Systems

Configuration Item. By considering different scenarios the project

manager and lead engineer can adjust the certainty factors so that the

overall project risk can be reduced. In this paper only simple

microcomputer based tools were used, but in large complex

procurements, the knowledge base could be much more robust and include

other types of knowledge representation other that production rules.

B .

78

_m

E

m
rw

Section IV

Formalization of Tool

79

m

M

m

Introduction

Building large-scale real-time embedded systems mandates a

consistent and robust mechanism for process representation. A Petri net

is a modelling tool used in the design and analysis of systems. The

expert system language OPS-5 has a similar execution strategy to a Petri

net model, and hence Petri nets may be simulated using the OPS-5-1ike

languages. Likewise Hypermedia based applications lend themselves

nicely to representation with Petri Nets.

The system described takes a Petri net for its input, selects the proper

medium for modelling the features, and then generates the simulator

input. The actual model is executed from the petri-net representation,

and each step in the process is demonstrated using a visual trace of the

knowledge base execution. The knowledge base is built visually, and the

execution is shown visually.

Issues of importance in the building of distributed systems involve

issues such as timing constraints and concurrency. However using

conventional techniques it is difficult to follow the flow of control

conceptually .. Petri Nets have received popular acceptance in the area of

hardware representation, discrete event simulation, and some types of

artificial intelligence applications. It is becoming more important in the

building of distributed real-time embedded systems to have the

capability to model these systems using more formal methods. The

formal method introduced in this presentation is a modified version of

Petri nets called HNPN's, Hypermedia-based Numerical Petri Nets.

Petri net models are popular in specifying and analyzing distributed

systems, parallel systems, and communication protocols. Some

researchers are beginning to apply Petri nets modeling techniques to

8O

m

w

specify, verify and analyze distributed real-time embedded systems. The

example included in this research is a complex diagnostic system

simulation for the Space Shuttle Main Engine. Advantages of Petri nets

over conventional ad hoc techniques are a solid mathematical foundation

and the techniques for their analysis such as reachability analysis,

invariant analysis, and transformation tracing

Petri nets in communication specification are known as

Place/Transition nets. Yet these conventional Petri nets are too primitive

to model complicated protocols conveniently since they lead to a very

involved and unreadable graph of net elements. For this reason, another

type of net is introduced, HNPNs, the Hypermedia-based Numerical Petri

Nets. NPNs are a generalization of Petri nets retaining the basic

principles, symbols and modes of operation of Petri nets, but adding a

considerable amount of descriptive power [SYM80a][SYM80b].

In order to understand the basic concept of Petri nets, a study of

the structural aspects of Petri nets and Numerical Petri nets is given.

81

D

L__
--___=--

=•

2. Basic definitions of Petri nets

A Petri Net structure (see Fig. 2.1) is a directed graph with two

types of nodes: places and transitions. Places (circles) model conditions,

and transitions (bars) model events. Arcs (arrows) connect places and

transitions. Arcs from places to transitions are input arcs and describe

the conditions under which an event can occur (e.g. a transition may fire).

Arcs from transitions to places are output arcs and describe the

conditions which result from the firing of a transition. Places are input

or output depending on the arcs associated with it. Places may contain

any natural number of tokens (blacks dots). The execution of a Petri net is

controlled by the number and distribution of tokens in the Petri net. When

all the input places of transitions hold at least one token each, the

transition is said to be enabled and may fire. After a transition fires, it

removes all of its enabling tokens from its input places and then placing

on each of its output places one token for each arc from the transition to

the place, thereby, enabling other transitions.

Q • place

_ • transition

• • token

places: pl, p2
transitions: tl, t2
token: black dot

input place of tl: pl
input place of t2:p2

output place of tl: p2
output place of t2: pl

Figure 2.1 A Petri net structure

Figure 4.1

82

u

m
m

E

Definition: A Petri net structure, C, is a three-tuple

directed graph, C=(P, T, A), where
P = {pl,p2, ,pn} is a finite set of places, n _> 0.

T = {tl, t2, ,tin} is a finite set of transitions, m _> 0.

A 0 {(p x T) U (T x P)} is the flow relation, a mapping

representing arcs between places and transitions.

The instantaneous state of a net is called a marking which is

represented by a certain distribution of tokens over the places. A marked

Petri net or a Place/Transition net is a four-tuple net M--(P,T,A,m).

Definition: A marked Petri net M = (C,m)is a Petri net

structure C=(P,T,A) with a marking m, where
m is nonnegative integer-valued function which assigns for

each place a number of tokens n, m :P n, n aN.

Therefore, given a Petri net C = (P,T,A) and a initial marking m, we

can execute the Petri net forever if there exists any transition that is

still enabled.

A reachable marking is a marking m which can be reached by the

initial marking in the net. Here, we introduce another definition

Reachability set Rs = (C,m) m a smallest set of collection of all reachable

markings in the given marked Petri net. A marking m' is said to be in

Rs(C,m) if there exists any sequence of transition firings which will

alter marking m into marking m'

3.0. Numerical Petri Nets

The limitations of Petri nets include: 1) only one type of token; 2)

an empty place may not be an enabling condition; and 3) inability to

represent priority. This makes it impossible for Petri nets to represent

operations on data, messages with several fields of data and decisions

based on the fields or data.

w

83

B
A

[Z=Kl

F5

C D

Place

Transition

Direction Arc

tl Transition name

G,I-; Tokens

E Enabling Condition
F Firing Rule

Y--F(x) Transition Operation

[Z=K] Memory Reference
Enabling condition

Figure 4.2. A Typical Numerical Petri Net

m

Numerical Petri nets include several extensions to Petri nets to

provide considerable descriptive power. Tokens may have any nature and

power. Each input arc has an enabling condition E. Transition enabling

conditions depend on tokens in input places and memory reference

enabling condition MR. Transition firing removes tokens from input places

according to firing rule FI and places tokens in output places according to

firing rule FO and there may be a transition operation TO on memory (see

figure 4.2).

3.1. Examples of NPNs

An example of an NPN transition is shown in figure 4.3. Transition a

is enabled when place A contains a single token, the data variable Y

equals two, and place B contains a token with identity Sl.

i

=

84

.--

m

m

m

v

B
A

[y=2] a I I x:=x+l

1

Q
C D

Figure 4.3. Enable conditions involving both
place tokens and system data.

On firing, a simple token is removed from A, the $1 token is

removed from B, the data variable x is incremented, a simple token is put

in C, and a token with identity $2 is placed in D. This transition could be

part of an NPN representing a subsystem where A and C are state places

(indicating which state the subsystem is in when holding a simple token),

and where B is an input place receiving signals such as $1 from another

subsystem, and D could be an output place sending signals such as s2 to

another subsystem.

85

4. Space Shuttle Main Engine Simulation

w

m

i

Local

Local Pot __

SIA

SSMEC Hardware

VAX CADS

This is an overview of the lab.To begin testing,click on continue.To
return to the main card click on return.

Figure 4.4

Overview of the Space

Engine Diagnostic Lab

(continue) (_)

Shuttle Main

Simulation.

m

Figure 4.4 is an overview of the simulator for the Space Shuttle

Main Engine in the Shuttle Main Engine Facility at the Marshall Space

Flight Center in Huntsville, Alabama. This research was an attempt to

introduce expert system technology in the diagnostic cycle. It became

clear very early in the project that there was a need for a more robust

representation mechanism to represent the individual elements of the

hardware, software, simulation, expert systems and most important of

all the user interface. Petri Nets provided the necessary consistency for

all of the elements except the user interface. As more attention has been

86

m

focused on hypermedia it was determined that petri nets provided an

excellent underlying foundation for the representation of the user

interface. In figure 4.5 the interesting points in the simulation are

represented by buttons in Hypercard. As the simulation is run the figure

4.4 will be animated in a separate window so that the user can see the

results evolve in the SSME Overview as well as watch the animated

diagnostics window where the actual knowledge base is running. Figure

4.5 is an example of this simulation.

w

B

87

Rule , Hardware Rule
Diegmm

Offset DAC

I

Gain DAC

_ Local

Local Pot

ADC
i

i

4volt ' m
PDP

Pwr Spply

Thisisan overviewof thelal

returnto themain cardclick

• SIA

'Remote ,.,,,

® ""
L_ ' _are

Hardware

i

VAX CADS

oZ
T n testing, click oncontinue. To

I

(continue) <_

ADC good
ifopt HardwareADC bad and
GaInADC bad and
OffsetADC bad and
LocalPotADC bad and

(HardwareDPM good or
GainDPM good or

OffsetDPM good or
LocalPotDPM good) then
ADCBad else
Return

SSME
Simulation

va,e0oo
To_ Teel
if SSMECScaling good or

ti_ DPM_o_or
ADC good or
Hardware good or
GainDAC good or
OffsetDAC good or
HardwareSIASwitch then
NextTest else
NextTest

Figure 4.5

Animated Simulation of SSME Diagnostic

FiF

88

R

The top part of the diagram is the overview of the SSME Diagnostic

Simulation. The bottom part of the window shows the structure of the

knowledge base. The black background with the dashed line leading into

it is the current section of the system being simulated. The simulator

allows several options - Display just the rule, display just the hardware,

animate the rules, animate the hardware, and most important animate the

coordination between rule base and diagram. This allows the user to

introduce spatial reasoning into the sequence of actions in the diagnostic

simulation. 5. The present analysis problems for Petri nets for

the SSME Simulator

HNPN's offer another important alternative, and that is the

capability to do analysis on the net representation of the main engine

shuttle. One of the major Petri net analysis techniques is the

reachability tree. In order to evaluate the usefulness of this analysis

technique, we first need to consider what types of problems may require

Petri nets.

4.1. Safeness

For a Petri net, a place is said to be safe if the number of tokens in

that place never exceed one. Thus a Petri net is said to be safe if all

places in the net are safe, which means the tokens in all places are less

or equal to one for all possible markings which derived from the initial

marking in a net [PET81][REI85][LIE76]. The formal definition is:

Definition: A Petri net C = (P,T,A) with an initial marking m

is called safe iff, for all m a Rs (C,m)and all piaP, m(pi)<_
1.

89

Figure 4.6 illustrates this property. Figure 4.6 represents a safe

net, because each place of all possible markings in the net holds either

none or one token. In this figure, the modeled system can be represented

as a communication protocol which operates over a 100% reliable

medium. The transmission lines never lose, duplicate, or reorder

messages. The protocol provides a single frame transfer service, the user

having to wait for an acknowledgement before sending further frames.

=_.._--

tl t2

,)

places: pl,p2,p3,p4
transitions: tl,t2,t3
initiali marking: (1,0,0,0)

Figure 4.6. A safe net

Place pl represents a sender is ready to send a message. Place p2

and p3 indicate that a message is on the channel and the sender waits to

be acknowledged. Place p4 can be a condition which says an

acknowledgement packet is on the way to the sender. The three

transitions are: tl--transmits a packet, t2--processes the received packet,

t3--acknowledges the sender. Whenever a transition is fired, noplace can

hold more than one token in the net. In figure 4.7, a strong connected

90

relationship is found in this modeled system[LIE76][COM71]. Thus, the

property of safeness is granted in this net. This protocol although not

exactly the interface mechanism in the shuttle diagnostic system offers

a simple example of the analysis available from a consistent notation. A

safe net will be able to give reliable diagnostic information to the

simulation.

(1 ,o,o,o)

t,/Z
(0,0,1,1)_ (0,1,0,1)

t2

Figure 4.7. State diagram for Fig. 1.1

The net shown on Fig. 4.9 is not safe. An initial marking is assigned

with m = (1,0,0), e.g. place pl hold one token, place p2 holds no token nor

place p3.

tl t2

t 3 places: pl,p2,p3
transitions: tl,t2,t3

initial marking: (1,0,0)

Figure 4.9. A unsafe net

91

L .

w

.. J,-.

From the above figure, firing an enabled transition tl in the initial

marking produces a new marking m' = (0,1,0). In this new marking, we can

fire any new enabled transition, say tk (in this case, t2 is the only choice

left), resulting in a new marking m" = (0,0,1). This can be continued as

long as there is at least one enabled transition in one of the markings.

Firing this particular net, a marking with the firing sequence _ = tl-t2-

t3-tl shows that the distribution of tokens on place p2 is greater than 1.

Therefore, by definition, the Petri net on Fig. 4.9 cannot said to be a safe

net.

5.2. Boundedness

In many cases, some modeled systems are not necessary to require

safeness. Instead it is important to ensure another property in the net

which is k-bounded or k-safe. A place is said to be k-bounded if the

number of tokens in that place is never greater than an integer k.

Therefore, if a net with an initial marking is k-bounded in all places in

each possible marking never exceed a certain maximum number k.

Definition: A Petri net C= (P,T,A) with an initial marking m

is called k-safe iff, for all m' G Rs (C,m) and all pl C_ p,

m (pi) _< k.

A data structure type operation "stack" problem illustrates this

property (see Fig. 4.10). There are two places and two transitions in the

net. Place pl represents the capacity of a stack (e.g., slots available in

the stack) and place p2 represents a user. The user may access the stack

through two operations - push and pop. Transition tl indicates a pop

operation, where the user can access whatever is inside the top of the

92

stack by firing this event. And transition t2 indicates a push operation,

the user may use this operation to return something back to the stack.

tl" pop

pl"
stack p2:

user

t2: push places: pl,p2
transitions: tl,t2
initial marking: (4,0)

Figure 4.10. A bounded net

The initial marking m = (4,0) means the capacity of the stack is

four slots. Four tokens reside in place pl, and none in place p2. Transition

tl can be fired as long as place pl holds a token. The firing rules for

transition t2 are the same as above. A reachability tree and state diagram

are shown in Fig. 4.11 We find that the reachability set for this net is Rs

-- {(n,k) I n<4, k<4}. Place pl and p2 are bounded to 4, thus, we say this net

is 4-bounded. We also find that the tokens which are represented as 4

available resources in the stack are never destroyed or created.

93

(4,0) (4,0)

(3, 1_2 (0,4) (3,1)

(2,2_ 2 (4,0)_/ tl (1,3) ,, t2

1'3, (31)2 ' _#_,2)

t_,0,4) (2,2) t2

(1,3)

v

Figure 4.11. A teachability tree & state diagram for Fig.4.10

The reachability of the tree represents the ability to capture the knowledge of the

expert in a petri net. The trees in the above pictures represent some of the

sequences found in the tutoring model in the SSME Simulator. As the utilization of

the interface for the student is monitored then the petri net that represents an unique

use of the user interface can be monitored and adequate feedback can be given to

the user at situations that do not meet the criteria of safeness or k-boundedness.

4.3. Liveness

Deadlock is an essential subject which relates to liveness. A

marking is said to be live if every transition is fireable, or can be made

fireable through some sequence of firings. The idea of liveness in a Petri

net is that every transition in the net is potentially fireable in every

marking of the reachability set. A transition t is potentially fireable in a

marking m if there exists a firing sequence from m to a new marking m'

in which t is enabled. Proving that a net is live ensures that the modeled

system is free from deadlocks, livelock, and dead code (transitions which

are never enabled). It is extremely important in a training simulation for

the SSME to not allow deadlock. The student is doing things in parallel

94

with activites distributed throughout the simulator. It is essential that

nothing in the student interface cause deadlock. All nets must be live.

Summary

Applying ITS technology to the shuttle diagnostics would not

require the rigor of the Petri Net representation, however it is important

in providing the animated simulated portion of the interface and the

demands placed on the system to support the training aspects to have a

homogeneous and consistent underlying knowledge representation. By

keeping the diagnostic rule base, the hardware description, the software

description, user profiles, desiered behavioral knowledge and the user

interface in the same notation, it is possible to reason about the all of

the properties of petri nets, on any selected portion of the simulation.

This reasoning provides foundation for utilization of intelligent tutoring

systems technology.

z

95

